Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Am Chem Soc ; 143(47): 19794-19801, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1521695

ABSTRACT

Effective screening of infectious diseases requires a fast, cheap, and population-scale testing. Antigen pool testing can increase the test rate and shorten the screening time, thus being a valuable approach for epidemic prevention and control. However, the overall percent agreement (OPA) with polymerase chain reaction (PCR) is one-half to three-quarters, hampering it from being a comprehensive method, especially pool testing, beyond the gold-standard PCR. Here, a multiantibodies transistor assay is developed for sensitive and highly precise antigen pool testing. The multiantibodies capture SARS-CoV-2 spike S1 proteins with different configurations, resulting in an antigen-binding affinity down to 0.34 fM. The limit of detection reaches 3.5 × 10-17 g mL-1SARS-CoV-2 spike S1 protein in artificial saliva, 4-5 orders of magnitude lower than existing transistor sensors. The testing of 60 nasopharyngeal swabs exhibits ∼100% OPA with PCR within an average diagnoses time of 38.9 s. Owing to its highly precise feature, a portable integrated platform is fabricated, which achieves 10-in-1 pooled screening for high testing throughput. This work solves the long-standing problem of antigen pool testing, enabling it to be a valuable tool in precise diagnoses and population-wide screening of COVID-19 or other epidemics in the future.


Subject(s)
Antibodies/immunology , Immunoassay/methods , Spike Glycoprotein, Coronavirus/immunology , Transistors, Electronic , COVID-19/diagnosis , COVID-19/virology , Immunoassay/instrumentation , Limit of Detection , Nasopharynx/virology , Polymerase Chain Reaction , Protein Subunits/genetics , Protein Subunits/immunology , Protein Subunits/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Saliva/virology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
3.
Cell Res ; 31(10): 1047-1060, 2021 10.
Article in English | MEDLINE | ID: covidwho-1380899

ABSTRACT

The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike's S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike's receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~103 times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 106 times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Tensile Strength , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , Binding Sites , COVID-19/therapy , COVID-19/virology , Humans , Hydrogen-Ion Concentration , Immunization, Passive , Molecular Dynamics Simulation , Protein Binding , Protein Domains/immunology , Protein Subunits/chemistry , Protein Subunits/immunology , Protein Subunits/metabolism , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Virus Internalization , COVID-19 Serotherapy
4.
Int J Biol Macromol ; 188: 740-750, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1356252

ABSTRACT

The world has been suffering from COVID-19 disease for more than a year, and it still has a high mortality rate. In addition to the need to minimize transmission of the virus through non-pharmacological measures such as the use of masks and social distance, many efforts are being made to develop a variety of vaccines to prevent the disease worldwide. So far, several vaccines have reached the final stages of safety and efficacy in various phases of clinical trials, and some, such as Moderna/NIAID and BioNTech/Pfizer, have reported very high safety and protection. The important point is that comparing different vaccines is not easy because there is no set standard for measuring neutralization. In this study, we have reviewed the common platforms of COVID-19 vaccines and tried to present the latest reports on the effectiveness of these vaccines.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Animals , COVID-19/immunology , COVID-19 Vaccines/chemistry , Humans , Immunogenicity, Vaccine , Protein Subunits/immunology , SARS-CoV-2/physiology , Vaccines, DNA/immunology , Vaccines, Synthetic/immunology
5.
Cell Rep Med ; 2(6): 100313, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1240648

ABSTRACT

The continual emergence of novel coronaviruses (CoV), such as severe acute respiratory syndrome-(SARS)-CoV-2, highlights the critical need for broadly reactive therapeutics and vaccines against this family of viruses. From a recovered SARS-CoV donor sample, we identify and characterize a panel of six monoclonal antibodies that cross-react with CoV spike (S) proteins from the highly pathogenic SARS-CoV and SARS-CoV-2, and demonstrate a spectrum of reactivity against other CoVs. Epitope mapping reveals that these antibodies recognize multiple epitopes on SARS-CoV-2 S, including the receptor-binding domain, the N-terminal domain, and the S2 subunit. Functional characterization demonstrates that the antibodies mediate phagocytosis-and in some cases trogocytosis-but not neutralization in vitro. When tested in vivo in murine models, two of the antibodies demonstrate a reduction in hemorrhagic pathology in the lungs. The identification of cross-reactive epitopes recognized by functional antibodies expands the repertoire of targets for pan-coronavirus vaccine design strategies.


Subject(s)
Antibodies, Monoclonal/immunology , Epitopes/immunology , Immunoglobulin Fc Fragments/metabolism , Spike Glycoprotein, Coronavirus/immunology , Animals , Antigen-Antibody Reactions , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , COVID-19/pathology , COVID-19/virology , Cell Line , Cross Reactions/immunology , Epitope Mapping , Female , Humans , Immunoglobulin Fc Fragments/immunology , Mice , Mice, Inbred BALB C , Phagocytosis , Protein Subunits/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
6.
Sci Adv ; 7(16)2021 04.
Article in English | MEDLINE | ID: covidwho-1189804

ABSTRACT

The COVID-19 (coronavirus disease 2019) pandemic underwent a rapid transition with the emergence of a dominant viral variant (from the "D-form" to the "G-form") that carried an amino acid substitution D614G in its "Spike" protein. The G-form is more infectious in vitro and is associated with increased viral loads in the upper airways. To gain insight into the molecular-level underpinnings of these characteristics, we used microsecond all-atom simulations. We show that changes in the protein energetics favor a higher population of infection-capable states in the G-form through release of asymmetry present in the D-form inter-protomer interactions. Thus, the increased infectivity of the G-form is likely due to a higher rate of profitable binding encounters with the host receptor. It is also predicted to be more neutralization sensitive owing to enhanced exposure of the receptor binding domain, a key target region for neutralizing antibodies. These results are critical for vaccine design.


Subject(s)
SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , COVID-19/pathology , COVID-19/virology , Glycosylation , Humans , Hydrogen Bonding , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Structure, Quaternary , Protein Subunits/chemistry , Protein Subunits/immunology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
7.
Clin Chem Lab Med ; 59(8): 1444-1452, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1186618

ABSTRACT

OBJECTIVES: SARS-CoV-2 serology presents an important role in several aspects of COVID-19 pandemic. Immunoassays performances have to be accurately evaluated and correlated with neutralizing antibodies. We investigated the analytical and clinical performances of a SARS-CoV-2 RBD IgG assay, automated on a high throughput platform, and the correlation of the antibodies (Ab) levels with the plaque reduction neutralization (PRNT50) Ab titers. METHODS: A series of 546 samples were evaluated by SARS-CoV-2 RBD IgG assay (Snibe diagnostics), including 171 negative and 168 positive SARS-CoV-2 subjects and a further group of 207 subjects of the COVID-19 family clusters follow-up cohort. RESULTS: Assay imprecision ranged from 3.98 to 12.18% being satisfactory at low and medium levels; linearity was excellent in all the measurement range. Considering specimens collected after 14 days post symptoms onset, overall sensitivity and specificity were 99.0 and 92.5%, respectively. A total of 281 leftover samples results of the PRNT50 test were available. An elevated correlation was obtained between the SARS-CoV-2 RBD IgG assay and the PRNT50 titer at univariate (ρ=0.689) and multivariate (ρ=0.712) analyses. CONCLUSIONS: SARS-CoV-2 S-RBD IgG assay shows satisfactory analytical and clinical performances, and a strong correlation with sera neutralizing activity.


Subject(s)
Antibodies, Neutralizing/immunology , Immunoglobulin G/immunology , Neutralization Tests/methods , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/pathology , COVID-19/virology , Child , Female , Humans , Immunoassay/methods , Immunoglobulin G/blood , Male , Middle Aged , Protein Subunits/immunology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Young Adult
8.
Clin Chem Lab Med ; 59(8): 1453-1462, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1175446

ABSTRACT

OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections cause coronavirus disease 2019 (COVID-19) and induce a specific antibody response. Serological assays detecting IgG against the receptor binding domain (RBD) of the spike (S) protein are useful to monitor the immune response after infection or vaccination. The objective of our study was to evaluate the clinical performance of the Siemens SARS-CoV-2 IgG (sCOVG) assay. METHODS: Sensitivity and specificity of the Siemens sCOVG test were evaluated on 178 patients with SARS-CoV-2-infection and 160 pre-pandemic samples in comparison with its predecessor test COV2G. Furthermore, correlation with virus neutralization titers was investigated on 134 samples of convalescent COVID-19 patients. RESULTS: Specificity of the sCOVG test was 99.4% and sensitivity was 90.5% (COV2G assay 78.7%; p<0.0001). S1-RBD antibody levels showed a good correlation with virus neutralization titers (r=0.843; p<0.0001) and an overall qualitative agreement of 98.5%. Finally, median S1-RBD IgG levels increase with age and were significantly higher in hospitalized COVID-19 patients (median levels general ward: 25.7 U/mL; intensive care: 59.5 U/mL) than in outpatients (3.8 U/mL; p<0.0001). CONCLUSIONS: Performance characteristics of the sCOVG assay have been improved compared to the predecessor test COV2G. Quantitative SARS-CoV-2 S1-RBD IgG levels could be used as a surrogate for virus neutralization capacity. Further harmonization of antibody quantification might assist to monitor the humoral immune response after COVID-19 disease or vaccination.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , Immunoglobulin G/immunology , Neutralization Tests , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/pathology , COVID-19/virology , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Protein Subunits/immunology , Reagent Kits, Diagnostic , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Severity of Illness Index , Young Adult
9.
Cell Rep Med ; 2(4): 100252, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1164615

ABSTRACT

The outbreak and spread of SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) is a current global health emergency, and effective prophylactic vaccines are needed urgently. The spike glycoprotein of SARS-CoV-2 mediates entry into host cells, and thus is the target of neutralizing antibodies. Here, we show that adjuvanted protein immunization with soluble SARS-CoV-2 spike trimers, stabilized in prefusion conformation, results in potent antibody responses in mice and rhesus macaques, with neutralizing antibody titers exceeding those typically measured in SARS-CoV-2 seropositive humans by more than one order of magnitude. Neutralizing antibody responses were observed after a single dose, with exceptionally high titers achieved after boosting. A follow-up to monitor the waning of the neutralizing antibody responses in rhesus macaques demonstrated durable responses that were maintained at high and stable levels at least 4 months after boosting. These data support the development of adjuvanted SARS-CoV-2 prefusion-stabilized spike protein subunit vaccines.


Subject(s)
Antibodies, Neutralizing/blood , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/blood , COVID-19/prevention & control , COVID-19/veterinary , COVID-19/virology , COVID-19 Vaccines/immunology , Female , Macaca mulatta , Male , Memory B Cells/immunology , Memory B Cells/metabolism , Mice , Mice, Inbred C57BL , Protein Domains/immunology , Protein Subunits/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Time Factors , Vaccination
11.
Nat Med ; 27(2): 270-278, 2021 02.
Article in English | MEDLINE | ID: covidwho-1065916

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19), has caused a global pandemic, and safe, effective vaccines are urgently needed1. Strong, Th1-skewed T cell responses can drive protective humoral and cell-mediated immune responses2 and might reduce the potential for disease enhancement3. Cytotoxic T cells clear virus-infected host cells and contribute to control of infection4. Studies of patients infected with SARS-CoV-2 have suggested a protective role for both humoral and cell-mediated immune responses in recovery from COVID-19 (refs. 5,6). ChAdOx1 nCoV-19 (AZD1222) is a candidate SARS-CoV-2 vaccine comprising a replication-deficient simian adenovirus expressing full-length SARS-CoV-2 spike protein. We recently reported preliminary safety and immunogenicity data from a phase 1/2 trial of the ChAdOx1 nCoV-19 vaccine (NCT04400838)7 given as either a one- or two-dose regimen. The vaccine was tolerated, with induction of neutralizing antibodies and antigen-specific T cells against the SARS-CoV-2 spike protein. Here we describe, in detail, exploratory analyses of the immune responses in adults, aged 18-55 years, up to 8 weeks after vaccination with a single dose of ChAdOx1 nCoV-19 in this trial, demonstrating an induction of a Th1-biased response characterized by interferon-γ and tumor necrosis factor-α cytokine secretion by CD4+ T cells and antibody production predominantly of IgG1 and IgG3 subclasses. CD8+ T cells, of monofunctional, polyfunctional and cytotoxic phenotypes, were also induced. Taken together, these results suggest a favorable immune profile induced by ChAdOx1 nCoV-19 vaccine, supporting the progression of this vaccine candidate to ongoing phase 2/3 trials to assess vaccine efficacy.


Subject(s)
Antibody Formation/immunology , COVID-19 Vaccines/immunology , T-Lymphocytes/immunology , Adolescent , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/virology , ChAdOx1 nCoV-19 , Dose-Response Relationship, Immunologic , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunoglobulin A/immunology , Immunoglobulin M/immunology , Interferon-gamma/metabolism , Lymphocyte Activation/immunology , Male , Middle Aged , Protein Subunits/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
12.
J Biol Chem ; 296: 100346, 2021.
Article in English | MEDLINE | ID: covidwho-1056842

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed into a global pandemic since its first outbreak in the winter of 2019. An extensive investigation of SARS-CoV-2 is critical for disease control. Various recombinant monoclonal antibodies of human origin that neutralize SARS-CoV-2 infection have been isolated from convalescent patients and will be applied as therapies and prophylaxis. However, the need for dedicated monoclonal antibodies suitable for molecular pathology research is not fully addressed. Here, we produced six mouse anti-SARS-CoV-2 spike monoclonal antibodies that not only exhibit robust performance in immunoassays including western blotting, ELISA, immunofluorescence, and immunoprecipitation, but also demonstrate neutralizing activity against SARS-CoV-2 infection to VeroE6/TMPRSS2 cells. Due to their mouse origin, our monoclonal antibodies are compatible with the experimental immunoassay setups commonly used in basic molecular biology research laboratories, providing a useful tool for future research. Furthermore, in the hope of applying the antibodies of clinical setting, we determined the variable regions of the antibodies and used them to produce recombinant human/mouse chimeric antibodies.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19/prevention & control , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/chemistry , Antibodies, Viral/isolation & purification , Binding Sites , COVID-19/immunology , COVID-19/virology , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Mice , Neutralization Tests , Protein Binding , Protein Interaction Domains and Motifs , Protein Subunits/administration & dosage , Protein Subunits/genetics , Protein Subunits/immunology , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/immunology , Vaccination
13.
Sci Adv ; 6(42)2020 10.
Article in English | MEDLINE | ID: covidwho-781066

ABSTRACT

To combat severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and any unknown emerging pathogens in the future, the development of a rapid and effective method to generate high-affinity antibodies or antibody-like proteins is of critical importance. We here report high-speed in vitro selection of multiple high-affinity antibody-like proteins against various targets including the SARS-CoV-2 spike protein. The sequences of monobodies against the SARS-CoV-2 spike protein were successfully procured within only 4 days. Furthermore, the obtained monobody efficiently captured SARS-CoV-2 particles from the nasal swab samples of patients and exhibited a high neutralizing activity against SARS-CoV-2 infection (half-maximal inhibitory concentration, 0.5 nanomolar). High-speed in vitro selection of antibody-like proteins is a promising method for rapid development of a detection method for, and of a neutralizing protein against, a virus responsible for an ongoing, and possibly a future, pandemic.


Subject(s)
Betacoronavirus/immunology , Peptidyl-Dipeptidase A/immunology , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Cell Surface Display Techniques/methods , Coronavirus Infections/pathology , Coronavirus Infections/virology , Dimerization , Humans , Kinetics , Pandemics , Peptides/chemistry , Peptides/immunology , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protein Domains/immunology , Protein Subunits/chemistry , Protein Subunits/immunology , Protein Subunits/metabolism , RNA, Viral/metabolism , SARS-CoV-2 , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/chemistry
14.
Immunology ; 160(3): 223-232, 2020 07.
Article in English | MEDLINE | ID: covidwho-648052

ABSTRACT

Since the first World Health Organization notification on 31 December 2019, coronavirus disease 2019 (COVID-19), the respiratory disease caused by the coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has been responsible for over four million confirmed infections and almost 300 000 deaths worldwide. The pandemic has led to over half of the world's population living under lockdown conditions. To allow normal life to resume, public health interventions will be needed to prevent further waves of infections as lockdown measures are lifted. As one of the most effective countermeasures against infectious diseases, an efficacious vaccine is considered crucial to containing the COVID-19 pandemic. Following the publication of the genome sequence of SARS-CoV-2, vaccine development has accelerated at an unprecedented pace across the world. Here we review the different platforms employed to develop vaccines, the standard timelines of development and how they can be condensed in a pandemic situation. We focus on vaccine development in the UK and vaccines that have entered clinical trials around the world.


Subject(s)
Viral Vaccines , Animals , COVID-19 , COVID-19 Vaccines , Clinical Trials as Topic , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Humans , Pandemics , Pneumonia, Viral/epidemiology , Protein Subunits/immunology , United Kingdom , Vaccines, Attenuated/immunology , Vaccines, DNA/immunology , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL